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Abstract

With the increased demands in performance, the optical disk drive needs to have high speed, be more stable and less

noisy. However, the disk vibration and the associate noise induced by the rotating flow caused by fluid–structure

interactions become more severe as the rotating speed of the disk drive increases. The purpose of this research is to design a

disk cover of an optical disk drive that can effectively improve the flow-induced disk vibration and the associate noise as

the rotating speed of the disk increases. Numerical results from the finite-element analysis show that altering the shape of

disk top cover influences the rotating flow and the corresponding secondary recirculating vortex, and then affects the disk

vibration. With a proper design of a disk cover, the flow-induced disk vibration can be reduced substantially as compared

to the original shape of the top cover at a rotating speed of 8000 rev/min. Furthermore, experimental results show that the

associate noise that includes the flow noise and structure-borne noise of disk can be reduced at least 10 dB at the same

rotating speed.

r 2008 Elsevier Ltd. All rights reserved.

1. Introduction

Increasing the data storage capacity of an optical disk accompanied by the demands of high data access
rates and high positioning accuracy of read/write heads has recently become a stringent necessity. With the
increased demands in performance, the optical disk drive needs to be rotating with high speed and more stable.
However, considerable vibration problems become apparent as the increase of the optical disk rotating speed.
For a high-speed disk drive, the flutter caused by fluid–structure interactions becomes apparent and leads to
track misregistration. The spinning disk vibrations or the flow-induced disk vibrations have attracted
considerable attention and have been investigated numerically and experimentally [1–8]. The rotating disk
induces a whirling motion of the fluid in the gap between shroud and disk due to viscosity. A pressure field
then is generated to balance the centrifugal and Coriolis forces acting on the fluid particles. Two typical flows
are produced: the flow in the disk rotation direction, called the primary flow and that perpendicular to the disk
surface, called the secondary flow. The fluid near the cover has a low speed and spirals inward whereas the
fluid near the disk has a higher speed and spirals outward. Under the circumstances, a radial inflow near the
ee front matter r 2008 Elsevier Ltd. All rights reserved.
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cover and a radial outflow near the disk are generated. As the disk rotating speed increases, the secondary flow
behaves more like a vortex. The convection coupling effect between the radial and axial velocities induced by
these vortices strongly enhances the disk flutter. Shimizu et al. [6] indicated that the disk vibration is strongly
coupled with the aerodynamic force, which causes the positioning error of the read/write head. Imai [7]
showed that the disk flutter is induced by the flow in the disk rotating direction; the azimuthal or primary flow,
instead of the airflow perpendicular to the disk. Furthermore, decreasing the disk-to-shroud spacing that
effectively restricts the winding of the flow could reduce the pressure fluctuation as well as the disk flutter.
Thus it is reasonable to presume that the pressure inside the disk drive cavity associated with different top
cover configuration is different. Thus the disk response will be varied if a different disk top cover is used. The
purpose of this research is to predict the fluid-induced disk response using different disk top cover when the
disk drive is rotating at a high speed.

2. Formulation of a rotating annular disk

Consider a thin, annular disk of thickness h, flexural rigidity D ¼ Eh3/12(1�n2), Poisson’s ratio n, density rd

rotating at a constant angular velocity Oz as shown in Fig. 1. When the disk is rotating, the energies in the disk
including the strain energy UB and kinetic energy TB due to bending; and the strain energy UR and kinetic
energy TR due to rotation are expressed in the rotating cylindrical coordinates (r, y, z) as follows [10]:
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where w is the disk transverse displacement, sr and sy are the normal stresses in the radial and tangential
directions, respectively. Note that sr and sy are functions of Oz and can be determined by solving the following
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Fig. 1. Schematic diagram of the disk and rotating coordinate system.
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equations:
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where er and ey are the normal strains in the radial and tangential directions, respectively. Using Hamilton’s
principle, one can derive the governing equation for the forced vibration of the rotating disk subjected to a
pressure field in the rotating frame of reference as
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where p(r, y, t) is the pressure acting on the disk, r2 ¼ q2/qr2+q/rqr+q2/qr2qy2 is Laplacian operator and
r
4
¼ r

2
r
2 is Biharmonic operator. The disk is clamped at the inner radius, r ¼ a, and free at the outer radius,

r ¼ b, so the geometric and natural boundary conditions are expressed respectively as follows:

½wðr; y; tÞ�r¼a ¼ 0;
q
qr

wðr; y; tÞ
� �

r¼a

¼ 0, (7a, b)

q2w
qr2
þ n

1

r

qw

qr
þ

1

r2
q2w

qy2

� �� �
r¼b

¼ 0, (7c)

q
qr

q2w
qr2
þ

qw

rqr
þ

1

r2
q2w

qy2

� �
þ

1� n
r2

q2

qy2
qw

qr
�

w

r

� �� �
r¼b

¼ 0. (7d)

The forced vibration of the rotating disk to Eq. (6) is discretized using the finite-element method and can be
expressed as

M €xþG _xþ ðK0 þ Ks � KCÞx ¼ p. (8)

In Eq. (8), the gyroscopic matrix G(Oz) is due to Coriolis effect and the stress stiffening matrix Ks(Oz) and
the spinning softening matrix KC(Oz) are caused by the centrifugal effects [14].

3. Formulation of a rotating flow in an enclosure

In this section, equations are introduced for describing the rotational effect in rotating flow. The equations
were cited from Refs. [11–13] which describe the rotating flow, Navier–Stokes and k–e equations, and rotating
turbulence models, respectively. Similar equations for general fluid dynamics analysis can also be found in
ANSYS [17]; however, the main equations in this section are narrowed down to describing the rotational effect
of a rotating flow.

The enclosure geometry, fluid properties and flow speed dominate the flow pattern in an enclosure. One can
determine the type of flow, i.e. the laminar or turbulent flow, based on the Reynolds number. For a disk
rotating with a high speed, the statistical technique is required to characterize the turbulent flow due to
variations of physic quantities in the temporal and spatial domains. The effect of temporal variations, e.g.
velocity fluctuations, can be eliminated using the Reynolds average (time average); and the effect of spatial
variations, e.g. density fluctuations, can be excluded using the Favre average (mass-weighted average).
Consider the fluid of density r and viscosity m confined in a disk enclosure as shown in Fig. 2. The continuity
and momentum equations of the rotating fluid in a rotating frame of reference are [11]
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Fig. 2. Schematic diagram of a simplified disk drive.
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where the instantaneous velocity vector u ¼ uxi+uyj+uzk and pressure p are the system variables of Eq. (9) in
the rotating coordinates. The body force vector f due to rotation in Eq. (9b) consists of Coriolis and the
centrifugal force:

f ¼ �2rX� u� rX� ðX� RÞ, (10)

where X ¼ Oxi+Oyj+Ozk is the rotating velocity vector and R stands for the position vector.
The instantaneous velocity ui of the flow can be expressed as the sum of the averaged mean component ūi

and a fluctuating component u0i. Consequently, the mass-weighted time-averaged Navier–Stokes equations for
a turbulent flow system are given as follows [12]:
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where ru0iu
0
j is the Reynolds stress tensor, dij is the Kronecker delta and ~ui ¼ rui=r̄ is the mass-weighted time-

averaged velocity. With the unknown correlation terms in the Reynolds stress tensor, it is required to model
the Reynolds stress by additional equations of known quantities in order to obtain a closed set of partial
differential equations. To address this problem, the familiar two-equation k–e closure system involving two
differential transport equations for the turbulence kinetic energy k and turbulence dissipation rate e can be
utilized. The standard k–e equations are expressed as follows [12]:
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where Ck, Ce, Ce1 and Ce2 are constants. For some extensions or modifications of the k–e model, the Reynolds
stress is related to the diffusion terms using �mtðq ~ui=qxj þ q ~uj=qxiÞ, thus Eq. (11b) can be rewritten as

q
qt
ðr̄ ~uiÞ þ

q
qxj

ðr̄ ~uj ~uiÞ ¼
q
qxj

�p̄dij þ me

q ~ui

qxj

þ
q ~uj

qxi

� �� �
þ f i, (13)

where the effective viscosity me ¼ m+mt consists of the laminar viscosity m and the turbulent viscosity mt. Each
extended k–e model offers different constant Cm and the source term in the dissipation equation, hence the
turbulent viscosity mt ¼ Cmrk2/e is calculated with the Cm and the solution to the turbulence equations (12).

In this paper, the Girimaji (GIR) model provided by ANSYS FLOTRAN is employed to deal with the
rotating turbulence [13]. The GIR turbulence model is a k–e based Reynolds stress model and is proper to
simulate strongly swirling flows with secondary vortices resulting from the anisotropy of the Reynolds stresses.
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Following Ref. [13], the GIR turbulence model is a fully-explicit and self-consistent algebraic Reynolds stress
model. In addition to the continuity, momentum and turbulence equations, six algebraic equations for
Reynolds stresses and two invariants are introduced to calculate the Cm. The symmetric deformation tension
Sij and antisymmetric rotation tension Wij are utilized to construct the two invariants Z1 and Z2:
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where Cr is a given rotational constant, eijk is alternating tensor operator and Ok is the rotating velocity vector
of the rotating frame of reference. Therefore, the effective viscosity mt ¼ mt(k, e, Sij, Wij) is a function of k, e, Sij

and Wij.
For discretization of the governing equations (12) and (13), Galerkin’s method of weighted residual is

utilized [12]. Then, the assembled system equations for variables ui, k and e to the rotating turbulence can be
expressed as

Af/ ¼ Sf, (15)

where f expresses each system variable, Sf is the source term and the system matrix Af consists of the
transient, advection and diffusion terms. In discretization of the advection effect, the second-order upwind
scheme, the Streamline Upwind/Petro-Galerkin approach, is employed [15].

The transient velocity and pressure response of the rotating turbulent flow can be determined using the
Semi-Implicit Method for Pressure-Linked Equations (SIMPLE) coupling algorithms to solve the system
equation (15) [9]. To overcome the unstable nature in a typical turbulence problem during the numerical
calculation, the Successive Over-Relaxation (SOR) method which utilizes a relaxation factor is adopted:

f0qþ1 ¼ f0q þ Rfðf
qþ1
� f0qÞ, (16)

where Rf is the relaxation factor, q is the iteration number and f with the superscript ‘‘0’’ represents the degree
of freedom obtained using the relaxation factor. To avoid numerical divergence during the calculation, a
conservative but time-consuming under-relaxation factor Rf ¼ 0.5 is used in the numerical simulation. The
overall convergence is measured in each iteration based on the normalized ratio test defined between two
successive iterations:

XN

i¼1

f0qþ1i � f0qi
��� ���

,XN

i¼1

f0qþ1i

��� ���o�f, (17)

where ef is the value designated for the criterion of convergence and N is the total number of the finite-element
nodes.

4. Dynamic coupling between a rotating disk and a fluid flow

For a disk rotating in an enclosure as shown in Fig. 2, the fluid pressure induced by the rotating disk will
also act as a feedback force exerting on the disk. The dynamic coupling between the spinning disk and the
corresponding induced flow will be enhanced as the disk rotating speed increases. For an extremely small time
duration Dt, one can obtain the pressure distribution while neglecting the disk deformation; and then solve the
disk response while assuming that the pressure is changed linearly for the next Dt. The procedure for the
linearized fluid–structure interaction is shown in Fig. 3. However, the numerical convergence strongly depends
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on the magnitude of time interval Dt in such a computation-intensive process. A numerical algorithm, which
incorporates commercial structural analysis code ANSYS, mathematical subroutines IMSL libraries and the
user-supplied routines is proposed. The advantage is simply that it extends the capability and flexibility of
ANSYS. ANSYS calculates the pressure and velocity distribution in a complicate enclosure, the dynamic
response of the disk, etc., whereas IMSL is responsible for providing subroutines including optimization,
transformations, matrix operations, etc. The user-supplied subroutine is required not only for the interface
between IMSL and ANSYS but also controlling the iteration in a transient analysis or in an optimization
procedure. The computation is intensive and time consuming; thus one can code the rotating disk himself
instead of using ANSYS for the vibration analysis in order to save time due to its simple geometry. In other
words, this algorithm provides a general and an automatic procedure to handle a multidisciplinary problem.

5. Numerical simulations

In order to study the influences of the aerodynamic force of the flow on the disk response, numerical
simulations of a flow enclosed in a co-axial circular shroud with a disk rotating inside as shown in Fig. 2 were
performed in the rotating coordinate system. Only half of the model is used in the finite-element analysis, so
one can observe only the axial symmetric response of the disk. However, the three-dimensional axisymmetric
flow model, which has assumptions of incompressible, adiabatic and Newtonian fluid, possesses not only the
radial velocity ur and axial velocity uz but also the swirling degree-of-freedom uy. The dimension and material
properties are listed in Table 1 and the boundary conditions of the flow in the rotating coordinate system are
listed in Table 2. The numerical simulations were carried out on a disk of 120mm in diameter, 1.2mm in
thickness and rotating at a constant speed Oz.

5.1. Steady-state analysis of rotating turbulent flow driven by a rigid disk

In Ref. [18], two kinds of rotating flow were introduced. One is a flow driven by a rotating disk, and
the other is a rotating flow over a fixed disk. With an axisymmetric model, exact solutions to the
Navier–Stokes equations can be obtained with two kinds of boundary layer near the rotating disk and the
fixed disk, respectively. The boundary layer near the rotating disk is called Ekman layer, and the layer near
the fixed disk is called Bodewadt layer. The interactions between these two kinds of rotating flow were
investigated by experiments of the Reynolds number ranged from 103 to 105 [11]. The Ekman boundary layer
near the rotating disk is acting as a pump centrifuging the fluid outward the lateral shroud, and the Bodewadt
boundary layer near the top cover and bottom shroud guide the fluid inward to the rotating axis. Then, a
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Table 2

Boundary conditions of flow in the rotating coordinate system

B.C. Velocity boundary condition Description

1–3 ur ¼ uz ¼ 0 and uy ¼ �rOz Fixed shroud

4 ur ¼ uy ¼ 0 Axisymmetric axis

5–8 ur ¼ uz ¼ uy ¼ 0 Rotating disk

-10 0 10 20 30 40 50 60
-1

-0.5

0

0.5

1

1.5

2

2.5

3
x 10-3

D
is

ta
nc

e 
fro

m
 th

e 
su

rfa
ce

 o
f d

is
k 

(m
)

r = rd / 3
r = rd / 2
r = rd

-10 -5 0 5 10
-1

-0.5

0

0.5

1

1.5

2

2.5

3
x 10-3

D
is

ta
nc

e 
fro

m
 th

e 
su

rfa
ce

 o
f d

is
k 

(m
)

r = rd / 3
r = rd / 2
r = rd

0 0.01 0.02 0.03 0.04 0.05 0.06
-400

-300

-200

-100

0

100

200

Radius (m)

P
re

ss
ur

e 
on

 th
e 

su
rfa

ce
 o

f d
is

k 
(P

a)

ptop
pbottom
ptop-pbottom

ur (m/sec)

uθ (m/sec)

Fig. 4. Steady-state rotating turbulence with a rigid disk rotating at 1000 rad/s: (a) stream function, (b) swirling velocity, (c) radial velocity

and (d) surface pressure.

Table 1

Dimension and material properties of a disk drive

rc 15� 10�3m E 2.16GPa

rd 60� 10�3m HU 6.2� 10�3m

rw 62� 10�3m HL 4.0� 10�3m

h 1.2� 10�3m r 1.205 kg/m3

rd 1200 kg/m3 m 1.8135� 10�5 kg/m s

n 0.38

C.C. Cheng et al. / Journal of Sound and Vibration 320 (2009) 43–59 49
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secondary flow is developed near the lateral shroud due to the interaction of Ekman and Bodewadt boundary
layers.

The Reynolds number, Re ¼ rOzr
2
w=m, and the aspect ratio, HU/rw or HL/rw, in Fig. 2 determine whether the

rotating flow turns into turbulence. In order to study the effects of the rotating turbulence, a steady-state
analysis of the flow with a rigid disk rotating inside an enclosure with a flat top cover was performed. With
Oz ¼ 1000 rad/s (9550 rev/min), HU ¼ 3.0� 10�3m, HL ¼ 1.0� 10�3m and other parameters listed in Table 1,
Fig. 4(a) shows the stream function of the flow with the GIR turbulence model at Re ¼ 2.55� 105. For the
same Reynolds number, the turbulent effect is obvious in the region over the rotating disk with a large aspect
ratio HU/rw; while the viscous effect dominates the flow under the disk with a small aspect ratio HL/rw, as
shown in Fig. 4. The velocity profiles of the primary and secondary flows are shown in Figs. 4(b) and (c),
respectively, in different radii. One may notice that the velocities in Fig. 4 were transformed to the stationary
coordinate system. Under the rotating disk, the flow seems to be laminar according to the velocity profile, and
the pressure on the bottom surface of the disk varies gradually as shown in Fig. 4(d). Nevertheless, the radial
pressure gradient on the top surface near the outer rim of the disk changes rapidly. The pressure difference
between the top and the bottom surfaces, i.e. the net pressure ptop�pbottom, changes from positive to negative
values and it is the main cause for disk deformation.
Fig. 5. Transient rotating turbulence with a flexible disk rotating at 1000 rad/s: (a) net pressure oscillation and (b) disk vibration.
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5.2. Transient analysis of rotating turbulent flow driven by a flexible disk

The net pressure between the top and the bottom surfaces of the disk results in deformation of the flexible
disk and then the deformed disk in the rotating flow alters the pressure distribution due to the change of the
boundaries, and vice versa. Therefore, a transient analysis of the rotating turbulent flow excited by a spinning
flexible disk is necessary for investigating the coupling effect between the fluid flow and the structure.

Assume the initial conditions to be zero pressure and zero velocities for the rotating flow. The transient
analysis of the coupled system for the time duration of 0.1 s was performed. Figs. 5(a) and (b) show the
pressure difference between the top and the bottom surfaces; and the displacement response of the disk,
respectively. After the time of 0.05 s, the responses of the net pressure and disk displacement become steady;
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Fig. 6. The streamline distributions at 0.1 s at 8000 rev/min: (a) Cover 1, (b) Cover 2 and (c) Cover 3.
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however, they consist of the steady-state and transient components. In Fig. 5(a), the profile of the steady net
pressure is similar to that of the steady-state result as shown in Fig. 4(d). It is a typical flow-induced vibration
phenomenon that the pressure fluctuation results from the disk vibration, while the flexible disk flutters as it is
rotating in the enclosure filled with air.

5.3. Transient rotating turbulence driven by a flexible disk to different covers

Kim [16] studied the air-borne noise experimentally by changing the gap between the disk and the cover of a
hard disk drive. In this research, a numerical simulation is performed first and three top covers with different
cross sections of an optical disk drive have been chosen to reduce the flow noise. Besides a flat top cover, which
is simply referred as the original configuration or Cover 1, two configurations as illustrated in Fig. 6 are
considered and are denoted as Cover 2 and Cover 3. The cross sections of Cover 2 and Cover 3 are designed
using B-spline curve with control points listed in Table 3. The disk responses from both configurations will be
compared to each other and with that of the original configuration.

With Oz ¼ 8000 rev/min, HU ¼ 6.2� 10�3m, HL ¼ 4.0� 10�3m and other parameters listed in Table 1,
the streamlines and velocity distributions that reveal the flow pattern are shown in Fig. 6(a) for the original
top cover at 0.1 s, whereas the streamlines and velocity distributions for Cover 2 and Cover 3 are shown in
Figs. 6(b) and (c), respectively. These figures show that the spiral vortex which occurs in the transition region
of boundary layer is located near the rim of the disk. Apparently, near the rim of the disk the velocity changes
rapidly from a small value at the disk surface to some relatively large value in a very short distance above the
disk surface. This rapid change in velocity due to slip results in a large velocity gradient normal to the disk
surface, which produces shear stresses and then the vortex even though the viscosity is small. From these
figures, it is obvious that the shape of the top cover mainly influences the flow in the radial and the transverse
directions; as well as the development of the vortex. The pressure distributions corresponding to each disk top
cover are shown in Figs. 7(a)–(c), respectively. The greatest pressure of all occurs at the tip of the disk in three
figures. However, after a detailed examination, one may note that the pressure in Cover 3 is distributed much
uniformly than the others. Furthermore, the pressure difference between the top and the bottom surfaces in
Cover 3 is also the smallest among them.

Under the same operating conditions, the disk transverse displacement at r ¼ rd corresponding to the
original top cover, Cover 2 and Cover 3 are shown in Fig. 8. The displacement response corresponding to
Cover 3 is the smallest among them and is approximated 50% lower than of Cover 1, the original cover. When
the disk rotating speed reduces to 4000 rev/min, the disk transverse displacement at r ¼ rd is shown in Fig. 9. It
shows that the disk displacement corresponding to Cover 3 is still smaller than that of Cover 1 and the
vibration amplitude of the disk with Cover 2 is the smallest. The amplitudes and offsets of the steady responses
of the vibration at the disk rim as shown in Figs. 8 and 9 are listed in Table 4. Nevertheless, the result from
numerical simulations requires experimental validation which will be illustrated in the next section.

The fundamental natural frequency is 128.50Hz for the non-rotating disk in a vacuum and is 216.02Hz
when it is rotating at 8000 rev/min. When the disk is rotating, the disk is stretched due to inertia effect and thus
its in-plane stiffness increases. Therefore, the disk natural frequency increases as the rotating speed increases.
Table 3

Coordinates of control points used in design of top cover, where Dz ¼ 1.0� 10�3m

Cover 2 Cover 3

r z r z

P1 rc HT rc HT

P2 rc+1(rd�rc)/5 HT�Dz rc+1(rd�rc)/5 HT�1Dz/2

P3 rc+2(rd�rc)/5 HT+Dz rc+2(rd�rc)/5 HT�2Dz/2

P4 rc+3(rd�rc)/5 HT�Dz rc+3(rd�rc)/5 HT�3Dz/2

P5 rc+4(rd�rc)/5 HT+Dz rc+4(rd�rc)/5 HT�4Dz/2

P6 rd HT rd HT�5Dz/2
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Fig. 7. The pressure distributions at 0.1 s at 8000 rev/min. (a) Cover 1, (b) Cover 2 and (c) Cover 3.
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For the rotating disk subject to flow-induced excitation, the disk frequency responses are obtained after
applying Fast Fourier Transform (FFT) to the disk displacements as shown in Fig. 8. The disk displacement in
each case typically exhibits pure tone excitation with frequencies of 191.95, 191.35 and 199.28Hz, respectively.
It implies that the top cover configuration influences the disk natural frequency due to the added mass effect of
fluid, which plays an important role in the disk flow-induced vibration. Moreover, the displacement is
obviously dominated by the disk first mode which resembles the first mode of a cantilever and has the greatest
displacement at the disk tip. Therefore, it is reasonable to use the disk displacement at its outer rim to
represent the disk maximum transverse displacement.
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Fig. 8. Comparisons of disk displacement at r ¼ rd for a disk rotating at 8000 rev/min.
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Fig. 9. Comparisons of disk displacement at r ¼ rd for a disk rotating at 4000 rev/min.

Table 4

Steady responses of the disk vibration in Figs. 8 and 9

Rev/min Cover 1 Cover 2 Cover 3

8000

Amplitude (mm) 275 275 125

Offset (mm) �37.5 �37.5 �25.0

4000

Amplitude (mm) 25.0 12.0 18.0

Offset (mm) �12.5 �11.0 �9.0
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6. Experimental validations

An experiment was performed to study the influences of the shape of top cover on the disk vibration
response and the associate noise while the disk is rotating at a high speed. The experimental setup is shown in
Fig. 10. Three disk covers, as shown in Fig. 11, are fabricated using acrylic fibers based on the same designs as
those in the numerical simulation. A laser displacement sensor and an infrared tachometer are installed under
the ODD. Two small holes were drilled through the bottom of the ODD, so the displacement can be measured
at the outer rim of the disk on the side opposite to the top cover as shown in Fig. 12. Note that the hole is on
the bottom of the ODD and is as small as possible in order to prevent it from influencing the flow. The sound
pressure is measured by a free-field microphone (B&K Type 4190) placed on the same height as the ODD but
at a distance of 0.3m away from it. The disk response at 4000 rev/min is represented by the order spectrum
using a FFT analyzer (B&K Type 3560) as shown in Fig. 13. It clearly shows that the disk displacements
corresponding to the first three orders dominate the response, which is a typical characteristic of a rotating
disk. Moreover, the displacement responses at higher orders for the ODD with top cover are more
pronounced than that without top cover. It implies that the top cover enhances the flow agitation and excites
high-order modes of the rotating disk.

Table 5 lists the displacement measured at the outer rim of the disk with respective to the ODD
without cover and with three different top covers when the disk is rotating, respectively, at 4000, 6000 and
8000 rev/min. The disk displacement of the ODD without cover is also measured to study the influence of the
top cover on the disk vibro-acoustic response. The response corresponding to Cover 1, which is a typical, flat
top cover, is used as a base line data. It shows that the disk vibration corresponding to the ODD with Cover 3
is the smallest except at 6000 rev/min. On the contrary, the vibration of the ODD with Cover 1 is the worst.
Furthermore, the differences in the displacement response between the first and the other orders decrease as
the disk rotating speed increases. It shows that the dominance by the first order in the disk displacement
Fig. 10. Schematic diagram of the experimental setup.

Fig. 11. Three different top covers used in ODD experiments: (a) Cover 1, (b) Cover 2 and (c) Cover 3.
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Fig. 12. Displacement measurement of rotating disk: (a) top view and (b) tachometer and displacement are installed below ODD.
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response decreases and the rotating flow excites the higher order as the disk rotating speed increases. The
sound pressure levels of the ODD without cover and with different covers are listed in Table 6 when the disk is
rotating at 8000 rev/min. The sound pressure of the first order of Cover 2 and Cover 3 are, respectively, 19.0
and 12.8 dB smaller than that of Cover 1. Note that the disk acoustic response is represented by the sound
pressure order spectrum instead of the total sound pressure level and the experiment is not conducted in an
anechoic chamber. The reason is simply that the background noise in the lab did not affect the disk acoustic
response at the harmonic orders of the rotating speed due to the little coherence between them. As a general
rule, the sound power level instead of sound pressure level should be used in the comparison of disk noise
radiation. However, these data are still worthy of being as a reference.

As shown in Fig. 9, when the disk rotational speed is 4000 rev/min (66.67Hz), the disk vibration frequencies
corresponding to the ODD with three covers are approximately 150Hz after applying FFT to the
displacement response. The disk vibration frequency 150Hz is nearly at 2.25 order of the rotational speed.
The amplitudes of the disk with Cover 2 and Cover 3 are smaller than that with Cover 1 in Fig. 9. In Fig. 13 of
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Fig. 13. Displacement response of ODD with different top covers at 4000 rev/min: (a) no cover, (b) Cover 1, (c) Cover 2 and (d) Cover 3.

Table 5

Disk displacement of the first three orders (unit: mm)

Rev/min Order Without cover Cover 1 Cover 2 Cover 3

4000 1 12.1 16.71 14.05 12.00

2 0.42 1.04 0.46 0.38

3 0.39 1.06 0.63 0.31

6000 1 3.58 5.14 3.54 5.17

2 0.44 0.45 0.15 0.76

3 0.15 0.28 0.31 0.43

8000 1 1.31 0.78 0.28 0.23

2 0.29 0.34 0.64 0.33

3 0.16 0.11 0.18 0.27
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the manuscript, the disk displacement response is represented using order spectra instead of frequency
spectrum from direct FFT of a time signal in order to avoid smear caused by the unstable rotating speed. With
Cover 2 and Cover 3, the amplitudes of the disk are significantly smaller than that with Cover 1 between the
second and third orders. Notice that lots of small structural features are neglected in the model simplified from
an ODD in order to speed up the time-consuming computation process of flow-induced vibration using the
finite-element method. As a result, one may predict that a great difference exists in comparing the result
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Table 6

Sound pressure level of the disk rotating at 8000 rev/min (unit: dB)

Order Without cover Cover 1 Cover 2 Cover 3

1 47.0 56.4 37.4 43.6

2 33.6 38.3 36.8 36.1

3 30.1 38.2 36.6 33.3
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between the numerical analysis and experiment. However, the trend from both results seems to be correlated
well by comparing Fig. 9 with Fig. 13 using the frequency information.

Altogether, the experiment and the numerical simulation reach the same conclusion that Cover 3 has a
better performance in suppressing the vibration and noise of the rotating disk. It concludes that with a proper
design of a disk cover, both the flow-induced disk vibration and the associate noise can be reduced.

7. Conclusions

Three top covers with different shapes of an optical disk drive have been designed to investigate the
aerodynamic effect on the disk stability and the related noise from an ODD. Results show that the cover shape
influences the velocity field of the rotating flow and then alters the characteristics of secondary recirculating
vortex. Moreover, the coupling advection effects among streamlines affect the distribution of fluid pressure on
the optical disk. All the effective pressure frequencies of three different top covers are close to the nature
frequency corresponding to the first axisymmetric mode of the disk and leads to the disk self-excited vibration.
Nevertheless, numerical simulations show that altering the shape can improve the disk response caused by the
effective pressure substantially when compared to the original shape of the top cover. Furthermore,
experimental results validate that the associate noise that includes the flow noise and structure-borne noise of
disk can be reduced more than 10 dB at the same rotating speed. Eventually, an optimization procedure
combined with the algorithm developed here seems to be feasible to determine the top cover shape that can
stabilize the high-speed rotating disk. Moreover, tooling the top cover using a press seems to be cost-effective
in a manufacturing process for practical applications.
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